Caso Prático de Project Finance

Dados do projeto

- Anos construção: 6 anos
- Anos operação: 30 anos
- Investimento: ano 1 = 6; nos seguintes anos (5 anos) = 4 (total capex: 26)
- Cash-flow de cada um dos 30 anos = 3 (EBITDA do cenário base, por uma questão de simplificação assumiu-se igual em todo o período, o que naturalmente não corresponde à realidade dos projetos)
- Assuma um cost of Equity (Ke) de 10%
- Assuma uma taxa de imposto de 20%
- Maturidade da Senior Debt: 10 anos
- Maturidade da dívida Mezzanine: 25 anos
- Taxa de juro da Senior Debt: 6%; taxa de juro da dívida mezzanine: 8%
- DSCR = 1,4

Nota: valores do exercício são arredondados a uma casa decimal.

Assim, o valor que pode ser pedido em dívida sénior (senior debt) consiste em (Equação 1):

Equação 1 – Cálculo do montante de dívida sénior

Senior Debt =
$$\frac{2.15}{(1,05)^1} + \frac{2.15}{(1,05)^2} + \dots + \frac{2.15}{(1,05)^{10}}$$
;

nota: 2.15 no numerador resulta do
$$\frac{Cash\ flow}{DSCR}$$
 ou seja 3/1.4

Sendo que pode ser pedido de dívida sénior um montante de 15.8

Com o seguinte plano de reembolso (Tabela 1):

Tabela 1 - Reembolso da dívida sénior

Ano maturidade do empréstimo (1)	FCF	SDebt	Amort	Juros
11	2.15	0.0	0.0	0.0
10	2.15	0.9	0.9	0.2
9	2.15	2.8	2.0	0.2
8	2.15	4.6	1.8	0.4
7	2.15	6.3	1.7	0.5
6	2.15	7.9	1.6	0.6
5	2.15	9.4	1.5	0.6
4	2.15	10.8	1.4	0.7
3	2.15	12.2	1.3	0.8
2	2.15	13.4	1.3	0.9
1	Cálculo: 3/1.4 = 2.15	14.6	1.2	0.9
0		15.8		

^{(1) —} Regra geral o reembolso da dívida sénior inicia-se com um período de carência face ao início da exploração, pelo que os anos indicados podem não correspondem aos anos do projeto, mas sim da maturidade do empréstimo.

O que significa que para um capex de 26, ao ser possível pedir em dívida senior 15.8, sobram de financiamento 10.2 a ser pedido por dívida mezzanine e o que não for possível através de dívida, dadas as restrições, será por via do Equity (Tabela 2).

Tabela 2 – Financiamento dívida senior e outras fontes

Ano	Capex	Sdebt	Drawdowns of Sdebt	Outras Fontes Fin
6	4.0	15.8	4.0	0.0
5	4.0	11.8	4.0	0.0
4	4.0	7.8	4.0	0.0
3	4.0	3.8	3.8	0.2
2	4.0	0.0	0.0	4.0
1	6.0	0.0	0.0	6.0
TOTAL	26.0	15.8	15.8	10.2

De seguida, há que calcular quanto pode ser pedido em Mezzanine, ou seja, calcular o "Going Concern Value Project". Este cálculo é feito para o 1° ano de operação (dado que só se começara a pagar a dívida Mezzanine após o inicio da operação). Assim, temos que:

Equação 2 – Cálculo da dívida mezzanine

Mezzanine Debt =
$$\frac{0.85}{(1,08)^1} + \frac{0.85}{(1,08)^2} + \dots + \frac{0.85}{(1,08)^{25}}$$
;

Nota: os 0.85 no numerador representam os cash-flows disponíveis após o serviço da dívida sénior (3-2.15 = 0.85)

Uma vez que a dívida Mezzanine é usada em primeiro lugar no "drawdown de dívida", temos de atualizar o valor de 9 (obtido pela equação 5) para o momento zero do projeto (isto é o inicio da fase de capex). Donde, atualizando (uma vez que os pagamentos da Dívida Mezzanine são postecipados para o final da fase de construção), obtemos um valor de:

Bo =
$$9/(1,08)^6 = 5.7$$

Assim, a dívida Mezzanine ao longo dos 25 anos da maturidade do empréstimo terá o seguinte plano de pagamentos (nota: a dívida no momento zero da construção, para efeitos de financiamento será de 5.7; Contudo, o período de carência de 6 anos, a uma taxa de juro de 8% faz com que a dívida no inicio da operação, em que começa a pagar juros e capital, seja de 9):

ano	juros	reemb	total	Dívida
1	0.7	0.0	0.7	9.0
2	0.7	0.4	1.1	8.6
3	0.7	0.4	1.0	8.3
4	0.6	0.4	1.0	7.9
5	0.6	0.4	1.0	7.5
6	0.6	0.4	0.9	7.1
7	0.5	0.4	0.9	6.8
8	0.5	0.4	0.9	6.4
9	0.5	0.4	0.9	6.0
10	0.5	0.4	0.8	5.6
11	0.4	0.4	0.8	5.3
12	0.4	0.4	0.8	4.9
13	0.4	0.4	0.7	4.5
14	0.3	0.4	0.7	4.1
15	0.3	0.4	0.7	3.8
16	0.3	0.4	0.6	3.4
17	0.2	0.4	0.6	3.0
18	0.2	0.4	0.6	2.6
19	0.2	0.4	0.6	2.3
20	0.2	0.4	0.5	1.9
21	0.1	0.4	0.5	1.5
22	0.1	0.4	0.5	1.1
23	0.1	0.4	0.4	0.8
24	0.0	0.4	0.4	0.4
25	0.0	0.4	0.4	0.0

Consequentemente, o projeto terá o seguinte fluxo de financiamento (Tabela 3):

Tabela 3 – Fluxo de financiamento

Ano	Capex		Mezzanine Debt	Equity
6	4.0	4.0	0.0	0.0
5	4.0	4.0	0.0	0.0
4	4.0	4.0	0.0	0.0
3	4.0	3.8	0.0	0.2
2	4.0	0.0	0.0	4.0
1	6.0	0.0	5.7	0.3
TOTAL	26.0	15.8	5.7	4.5

Desta forma, a estrutura final de financiamento deste projeto resulta num valor de dívida de 83% e um valor de capitais próprio de 17%, o que significa uma alavancagem de 4.9 (Tabela 4).

Tabela 4 – Estrutura do Project Finance

Capitais Próprios (Equity)	4.5	17%
Dívida Sénior (Senior Debt)	15.8	61%
Dívida Mezzanine	5.7	22%
TOTAL	26.0	100%

O custo da dívida é de 6.5% [Kd=(15.8*6%+5.7*8%)/21.5]. Depois do efeito fiscal (com uma taxa de imposto de 20%), o Kd é de 5.2% [6.5%* (1-0.2)]

Como o Cost of Equity é de 10%, temos um WACC de 6% [WACC = 0.17*10% + 0.83*6.5%*(1-0.2)]

Desta forma temos que os cash-flows disponíveis (no valor de 3/ano) serão dispostos da seguinte forma ao longo dos 30 anos do projeto (Tabela 5) (note-se que nos primeiros anos de atividade há a necessidade de algum reforço de Equity):

Tabela 5 – Utilização dos cash-flows do projeto

	Tubela 5 – Otilização dos casti-flows do projeto						
Ano Cash-Flow			uros	Reembolsos		Serviço Dívida	Equity
		D.Senior	Mezzanine	D.Senior	Mezzanine	, , ,	-17
1	3	0.9	0.7	1.2	0.0	2.9	0.1
2	3	0.9	0.7	1.3	0.4	3.2	-0.2
3	3	0.8	0.7	1.3	0.4	3.2	-0.2
4	3	0.7	0.6	1.4	0.4	3.2	-0.2
5	3	0.6	0.6	1.5	0.4	3.1	-0.1
6	3	0.6	0.6	1.6	0.4	3.1	-0.1
7	3	0.5	0.5	1.7	0.4	3.1	-0.1
8	3	0.4	0.5	1.8	0.4	3.0	0.0
9	3	0.2	0.5	2.0	0.4	3.0	0.0
10	3	0.2	0.5	0.9	0.4	1.9	1.1
11	3		0.4		0.4	o.8	2.2
12	3		0.4		0.4	o.8	2.2
13	3		0.4		0.4	0.7	2.3
14	3		0.3		0.4	0.7	2.3
15	3		0.3		0.4	0.7	2.3
16	3		0.3		0.4	0.6	2.4
17	3		0.2		0.4	0.6	2.4
18	3		0.2		0.4	0.6	2.4
19	3		0.2		0.4	0.6	2.4
20	3		0.2		0.4	0.5	2.5
21	3		0.1		0.4	0.5	2.5
22	3		0.1		0.4	0.5	2.5
23	3		0.1		0.4	0.4	2.6
24	3		0.0		0.4	0.4	2.6
25	3		0.0		0.4	0.4	2.6
26	3						3.0
27	3						3.0
28	3						3.0
29	3						3.0
30	3						3.0

Assim, usando WACC como taxa de desconto, para um capex de 26 e um cash-flow do projeto (FCFF) de 3/ano, o projeto tem um VAL de 14.2 e uma TIR de 11%.

Considerando apenas os valores do Equity (4.5 de Equity no capex9 e os cash-flows disponíveis para os acionistas, e usando o Ke de 10%, temos um VAL de 3.1 e uma TIR de 17%.